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Hocheffiziente Synthese von Rotaxanen mit
einem anionischen Templat**
Gosia M. Hübner, Jens Gläser, Christian Seel und
Fritz Vögtle*

Verbindungen wie Rotaxane und Catenane bestehen aus
nichtkovalent verknüpften Molekülen, die derzeit breites
Interesse finden. Ihre Synthese bedarf meist einer Templat-
assistenz, also der Präorganisation von Molekülbausteinen,

wäûrigen Filtrate wurden auf 100 mL eingeengt, mit konz. Salzsäure auf
pH 1 eingestellt und im Kühlschrank abgekühlt. Der dabei gebildete Nieder-
schlag der Tetrasäure 2 wurde abfiltriert, mit Wasser gewaschen und ge-
trocknet. Ausbeute 5.41 g (82%), Schmp.>3708C (>3508C,[22a] >3008C[22b]).
Einkristalle wurden durch langsames Abkühlen einer heiûen wäûrigen
Lösung gezüchtet.
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z. B. durch Metallkoordination, hydrophobe oder Donor-
Acceptor-Wechselwirkungen oder Wasserstoffbrücken.[1] Wir
berichten hier über eine neue Methode zur Synthese von
Rotaxanen, die auf dem Einsatz eines ¹supramolekularen
Nucleophilsª basiert, das durch molekulare Erkennung eines
anionischen Stopperbausteins durch einen Tetralactam-Reif
gebildet wird.

Es wurden bereits einige Beispiele für neutrale organische
Wirtverbindungen für Anionen beschrieben, die meistens meh-
rere Amid-, Sulfonamid- oder Harnstoffgruppen enthalten.[2]

Makrocyclen wie 1 (siehe Schema 1), die mehrfach in Rotaxan-
und Catenansynthesen eingesetzt wurden,[1d] enthalten aroma-
tische Amidgruppen, deren NH-Protonen in das Innere des
Rings weisen, wie eine Reihe von Kristallstrukturen belegt.[3]

Das Tetralactam 1 a[4] (siehe Schema 1) bindet sekundäre
Amide in CD2Cl2, wobei es offensichtlich als Wasserstoff-
brückenbindungs-Donor fungiert.[5] Semirotaxankomplexe
mit in situ gebildeten Semiachsen[6] sind wahrscheinlich die
entscheidenden Zwischenprodukte bei den entsprechenden
Rotaxan- und Catenansynthesen. Wir versuchten zu klären,
ob Anionen als Wasserstoffbrückenbindungs-Acceptoren

nicht auch auf ähnliche Weise gebunden werden könnten,
selbst wenn aus sterischen Gründen ausgeschlossen werden
kann, daû beide Isophthalsäureeinheiten in der Lage sind,
gleichzeitig ein und dasselbe Anion zu binden.

Tatsächlich ergaben NMR-Experimente mit Tetrabutylam-
monium-Salzen von Halogeniden und einigen Oxoanionen in
CD2Cl2 die für Wasserstoffbrückenbindungen typischen deut-
lichen Tieffeldverschiebungen der NH-Protonen von 1 a. Die
¹innerenª Isophthalsäureprotonen (H-2) werden ebenfalls deut-
lich, aber nicht ganz so stark beeinfluût.[7] Job-Plots bestätigen
die 1:1-Stöchiometrie der gebildeten Komplexe.[8] In einigen
Fällen ist die Bindung zu stark für eine genaue Bestimmung
der Assoziationskonstanten durch NMR-Titration (wahrschein-
lich >105mÿ1), so daû ein 4:1-Gemisch aus CD2Cl2 und
CD3OD eingesetzt werden muûte, um die Affinitäten zu er-
niedrigen.[9] Das Monosulfonamid-Trilactam 1b dient ebenfalls
als Wirt, die Stärke der Bindung ist hier jedoch deutlich ver-
ringert, und zwar vor allem bei den Halogeniden. Die Kom-
plexierungseigenschaften sind in Tabelle 1 zusammengefaût.

Diese Resultate ermutigten uns, die Wirteigenschaften der
Makrocyclen für organische Anionen, die als Nucleophile in

Tabelle 1. Gleichgewichtskonstanten Ka [mÿ1] (Fehler �15 %) der Assoziation zwischen den Makrocyclen 1 a und 1b und unterschiedlichen Anionen,[a]

bestimmt durch NMR-Titration bei Raumtemperatur in CD2Cl2.

Ligand Solvens Fÿ Clÿ Brÿ Iÿ AcOÿ NO3
ÿ H2PO4

ÿ

1a CD2Cl2 200 ± [b] ± [b] ± [b] 1.8� 105 ± [b] ± [b]

1a CD2Cl2/CD3OD (4/1) ± [c] 330 420 ± [d] 120 250 ± [d]

1b CD2Cl2 ± [c] 290 290 50 1.5� 104 60 2.4� 103

[a] Die Anionen wurden in Form ihrer Tetrabutylammonium-Salze eingesetzt. [b] Ka ist zu hoch, um NMR-spektroskopisch bestimmt werden zu können.
[c] Keine Komplexierung festgestellt. [d] Gleiche Gröûenordnung wie mit Clÿ und Brÿ, aber die Signalverschiebungen sind klein und die berechneten Werte
weder präzise noch akkurat.

Schema 1. Effiziente Synthese der Rotaxane 5 mit Bis(phenylether)-Achsen unter Verwendung eines anionischen Templats. Der Phenolat-Reif-Komplex
[1a ´ 2] reagiert dabei als supramolekulares Nucleophil mit der zunächst gebildeten Halbachse 4.
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SN-Reaktionen dienen könnten, hinsichtlich möglicher An-
wendungen in Rotaxansynthesen zu untersuchen. NMR-
spektroskopische Untersuchungen ergaben tatsächlich, daû
bei typischen in der Synthese verwendeten Konzentrationen
(5 mm Tetralactam 1 a, CD2Cl2) Phenolate, Thiophenolate und
Sulfonamid-Anionen nahezu quantitativ gebunden werden.[10]

Auch wenn die Assoziation bemerkenswert stark ist, war es
keineswegs klar, ob der Komplex eines Makrolactams wie 1 a
z. B. mit einem Phenolatstopper oder einem Phenolat-Ach-
senmittelstück ein geeignetes Templat für eine Rotaxansyn-
these ist, da diese Anionen wohl nur ¹auf dem Reif aufsitzenª
könnten, anstatt unter Bildung eines Prärotaxans hindurch-
zufädeln (threading). Die Reaktion von p-Tritylphenolat 2 a,
dem Dibromid 3[11] und dem Reif 1 a führte aber ungeachtet
dessen zum Rotaxan 5 a in einer erstaunlichen Ausbeute von
95 % (Schema 1). Dies dürfte die bislang höchste Ausbeute
für die Synthese eines Rotaxans sein. Wir vermuten, daû in
einem ersten Schritt das Dibromid 3 mit dem Stopper-Reif-
Komplex [1 a ´ 2 a] unter Bildung der Semiachse 4 a reagiert
und das entstehende Semirotaxan daraufhin dissoziiert.[12]

Das freie 4 a reagiert dann mit einem zweiten Phenolat-
Reif-Komplex [1 a ´ 2 a] ± welcher als supramolekulares Nu-
cleophil fungiert ± zum Rotaxan 5 a.[13]

Nach unserem Kenntnisstand ist dies der erste Fall einer
Rotaxansynthese, die auf einer Assistenz durch ein anioni-
sches Templat basiert. Mit 3,5-Di-tert-butylphenolat 2 b als
Stopperkomponente betrug die Ausbeute an 5 b 57 %.[14]

Wegen der geringeren Gröûe des Stoppers ist 5 b nur
metastabil, d. h., bereits im Verlauf der Synthese bei Raum-
temperatur kommt es teilweise zum Bruch der mechanischen
Bindung, wobei der Reif langsam unter Bildung der freien
Komponenten von der Achse abfädelt. Der Zerfall kann
leicht NMR-spektroskopisch anhand des allmählichen Auf-
tretens von Signalen der freien Komponenten verfolgt
werden. Nach 48 Stunden bei Raumtemperatur in CDCl3

sind etwa 10 % Abfädelung festzustellen.[15]

Makrocyclische Lactame in unpolaren Lösungsmitteln
weisen starke Affinitäten sowohl für kleine anorganische als
auch für gröûere organische Anionen auf. Hiervon ausgehend
wurde eine neue, äuûerst effiziente Rotaxansynthese mit
einem anionischen Templat entwickelt, die möglicherweise
auch neue Wege zu anderen mechanisch verknüpften Mole-
külen wie Catenanen und Knoten eröffnet. Derzeit unter-
suchen wir auch die Anwendung anderer organischer An-
ionen wie Thiphenolate, Sulfonamidate, Carboxylate und
Carbanionen.[16]

Experimentelles

Synthese von 5 a : Eine Mischung aus 1 a[4] (48.1 mg, 0.05 mmol), p-
Tritylphenol H-2a (33.6 mg, 0.1 mmol, Lancaster) und 3[11] (18.4 mg,
0.05 mmol) in CD2Cl2 (10 mL) wird mit festem K2CO3 (25 mg) 7 d bei
Raumtemperatur gerührt. Der Feststoff wird abfiltriert und das Filtrat mit
Wasser gewaschen und über MgSO4 getrocknet. Die säulenchromatogra-
phische Reinigung an Kieselgel mit CD2Cl2/Essigsäureethylester (30/1)
liefert 5a (95 %, 89 mg, 0.048 mmol) als farbloses Pulver. Schmp. 175 ±
177 8C; 1H-NMR (250 MHz, CDCl3): d� 1.34 (s, 9 H, tBu-CH3), 1.56, 1.68,
und 2.34 (b, 4H, 8H bzw. 8H, Cyclohexandiyl-CH2), 1.93 (s, 24 H, Aryl-
CH3), 2.49 (s, 4 H, C2H4), 4.52 (s, 4 H, OCH2), 6.49 und 6.90 (AA'BB', 8H,
J� 8.7 Hz, Phenoxy-H-2/6 bzw. -H-3/5), 6.51 und 6.66 (AA'BB', 8H, J�
7.9 Hz, p-Xylylen), 7.02 (s, 8 H, Amidophenyl), 7.1 ± 7.25 (m, 30 H, Trityl),

7.43 (s, 1H, Isophthaloyl-H-2), 7.60 (t, 1H, J� 7.7 Hz, Isophthaloyl-H-5),
7.65 (s, 1H, Isophthaloyl-H-2), 8.12 (d, 2H, J� 7.7 Hz, Isophthaloyl-H-4/6),
8.16 (s, 2 H, 5-tBu-Isophthaloyl-H-4/6); 13C-NMR (62.9 MHz, CDCl3): d�
18.83 (Aryl-CH3), 23.00 (Cyclohexandiyl-CH2), 26.34 (Cyclohexandiyl-
CH2), 31.16 (5-tBu-Isophthaloyl-CH3), 35.31 (5-tBu-Isophthaloyl-Cq), 35.78
(Cyclohexandiyl-CH2), 37.45 (C2H4), 45.41 (Cyclohexandiyl-Cq), 64.28
(Ph3C), 69.86 (OCH2), 113.27 (CH), 121.37 (CH), 125.97 (CH), 126.32
(Cq), 126.92 (CH), 127.48 (CH), 127.66 (CH), 128.10 (CH), 129.27 (CH),
130.36 (Cq), 130.91 (Cq), 131.11 (CH), 131.01 (Cq), 132.02 (CH), 132.36
(CH), 134.32 (Cq), 134.57 (Cq), 134.77 (Cq), 140.05 (Cq), 140.94 (Cq), 146.79
(Cq), 148.82 (Cq), 156.28 (Cq), 165.01 (CO), 165.45 (CO); MALDI-MS:
m/z : 1863.2 [M�].

Synthese von 5 b : Wie für 5a beschrieben, aber mit 3,5-Di-tert-butylphenol
H-2b (Aldrich) als Stopperkomponente; 0.1 ¾quiv. Dibenzo[18]krone-6
werden hinzugefügt, es wird 3 d gerührt und mit Petrolether(40 ± 60)/
Essigsäureethylester (15/1) chromatographiert. Ausbeute 57%;
Schmp. 206 ± 208 8C; 1H-NMR (250 MHz, CDCl3): d� 1.23 (s, 36H, 3,5-
Di-tBu-Phenyl-CH3), 1.38 (s, 9H, 5-tBu-Isophthaloyl-CH3), 1.56, 1.68 und
2.35 (b, 4H, 8 H bzw. 8H, Cyclohexandiyl-CH2), 1.94 und 1.95 (2 s, je 12H,
Aryl-CH3), 2.45 (s, 4H, C2H4), 4.58 (s, 4H, OCH2), 6.45 und 6.60 (AA'BB',
8H, J� 7.9 Hz, p-Xylylen), 6.66 (s, 4 H, Phenoxy-H-2/6), 7.04-7.08 (m, 10H,
Phenoxy-H-4 und Amidophenyl), 7.58 (s, 1 H, Isophthaloyl-H-2), 7.62 (t,
1H, J� 7.7 Hz, Isophthaloyl-H-5), 7.74 (s, 1H, Isophthaloyl-H-2), 8.16 (d,
2H, J� 7.7 Hz, Isophthaloyl-H-4/6), 8.21 (s, 2 H, 5-tBu-Isophthaloyl-H-4/
6); 13C-NMR (62.9 MHz, CDCl3): d� 18.78 (Aryl-CH3), 22.97 (Cyclohe-
xandiyl-CH2), 26.32 (Cyclohexandiyl-CH2), 31.14 (5-tBu-Isophthaloyl-
CH3), 31.33 (Stopper-tBu-CH3), 34.93 (Stopper-tBu-Cq), 35.30 (tBu-Iso-
phthaloyl-Cq), 35.66 (Cyclohexandiyl-CH2), 37.56 (C2H4), 45.29 (Cyclohe-
xandiyl-Cq), 69.96 (OCH2), 108.77 (Stopper-CH), 115.74 (Stopper-CH),
121.46 (CH), 124.17 (CH), 126.21 (CH), 126.78 (CH), 127.93 (CH), 128.62
(CH), 129.41 (CH), 130.34 (CH), 130.98 (Cq), 131.12 (Cq), 132.10 (CH),
134.38 (Cq), 134.48 (Cq), 134.66 (Cq), 134.78 (Cq), 140.80 (Cq), 148.62 (Cq),
148.74 (Cq), 152.60 (Cq), 154.16 (Cq), 157.92 (Cq), 164.96 (CO), 165.37 (CO);
FAB-MS: m/z : 1580.1 [MH�].
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